MOFs成就更完美的SPME
MOFs是当今世界上有机和无机基团结合的多功能材料,SPME 是当今绿色的样品处理方法,二者相配当属珠联璧合的联姻,良材铸利器的结合。上一讲我们大家都知道:金属有机框架化合物(Metal Orgaic Framework)(MOFs)是由无机金属离子和有机配体,通过共价键或离子共价键自组装络合形成的具有周期性网络结构的晶体材料,MOFs具有独特的孔道,可设计和调控它的尺寸和几何形状,并在孔道内存在开放式不饱和金属配位点,使其可用于吸附或分辨不同的气体或离子,MOFs非常适合于辨识特定的小分子或离子,在多相催化、气体分离和储存等方面存在广泛的应用。由于MOFs具备优秀能力的性质,如比表面高、耐热性好、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,尤其是非常适合用作固相微萃取的吸附剂。
SPME 是一种广泛使用的样品前处理技术,它是集萃取、浓缩、解吸、进样于一体的样品前处理新技术,它以固相萃取(SPE)为基础,保留了SPE的全部优点,排除了需要柱填充物和使用有机溶剂进行解吸的缺点。SPME是以涂渍在石英玻璃纤维(或不锈钢金属丝)上的固定相(高分子涂层或吸附剂)作为吸收(吸附)介质,对目标分析物进行萃取和浓缩,并在气相色谱进样口中进行分析(或变通结构在液相色谱系统里用液相色谱流动相洗脱吸附样品,用液相色谱进行分析),这一技术适合于很多技术领域的样品处理和分析。
1. SPME 使用过的吸着剂SPME发明人Pawliszyn 研究组最早使用的吸着剂是涂渍有二甲基硅氧烷(PDMS)和聚丙烯酸酯(PA)涂层的萃取丝,涂渍工艺类似于毛细管气相色谱柱,但是膜厚远高于毛细管气相色谱柱。起初商品SPME萃取丝的固定相有:聚二甲基硅氧烷,聚丙烯酸酯(PA),碳吸附剂等。
除去这常用的固定相之外,十几年来人们研究了多种固定相涂层,在SPME 应用中,没有一种单一的涂层可以适应所有的化合物。涂层的性质要和被分析物的性质相匹配,选用的固定相涂层首先要对有机分子有较强的萃取富集能力,使分析物在涂层中有较快的扩散速度,能在较短时间内达到分配平衡,并在热解析时能迅速脱离固定相涂层,而不会造成峰的扩宽。同时,由于分析物是在高温下易于解吸,因此针对不同的分析物对涂层可有多种选择,为了适应各种需要,特别是用于极性化合物的SPME固定相,这就推动了新SPME固定相的开发和研究。人们首先开发的是混合型SPME萃取丝涂层,如PDMS-DVB(聚二甲基硅氧烷-二乙烯基苯),PDMS-Carboxen(聚二甲基硅氧烷-专利碳吸附剂),CW-DVB(聚乙二醇-二乙烯基苯),CW-TRR(聚乙二醇-高温树脂),上述固定相 Sulelco 公司都把它们形成商品SPME产品。为了改进能够萃取极性化合物的涂层,又要满足涂层必须涂渍到石英丝上、可适应高温的要求,因此寻找新的性能优越的SPME固定相是比较困难的。人们所研究过的SPME吸着剂涉及的无机材料有石墨化碳黑,铅笔芯,玻璃碳,陶瓷等,碳类SPME是研究最多的一类涂层材料。自从1997年有人把HPLC固定相使用的键合硅胶固定相C8和C18用做SPME的涂层以后,这类吸着剂的研究和应用越来越多。
1999年Pawliszyn 研究组把导电聚合物用于SPME涂层,他们把聚吡咯(PPY)及其衍生物用电化学方法涂渍在金属丝上,它有利于通过 π-π 相互作用力萃取芳香族化合物,特别是多环芳烃,由于它有极性基团适合于萃取极性多环芳烃,它还具有阴离子交换的倾向,可以萃取阴离子化合物,此后这一SPME有多方面的研究和使用。
分子印迹技术(molecular imprinting technology , MIT) 是一种高选择性分离技术,由于MIT模仿了生物界的锁匙作用原理,使制备的材料具有极高的选择性,在固相萃取、化学或生物传感器、不对称催化和模拟酶等方面得到了应用。2001年 Koster把 MIP 用作 SPME 萃取丝上的分离介质, Pawliszyn 研究组MIP 用作管内 SPME 固定相和HPLC联用测定体液中的 β-阻断剂药物。
限进介质吸附剂(restricted accessmatrix sorbents)是针对大分子的体积排阻功能和对小分子分析物的保留功能,通过控制吸附剂合适的孔径和对吸附剂的外表面进行适当的亲水性修饰,使得生物或环境样品溶液中的大分子不能进入吸附剂的内孔中去,且亲水性的外表面使生物大分子在吸附剂外表面不会发生不可逆的变性和吸附,可以用这一类吸附剂排除生物大分子,而对小分子分析物可以进行萃取,这种限进介质吸附剂在固相萃取中得到很多应用。
2 MOFs 用作SPME 吸着剂在寻求SPME的研究中,人们自然会想到具有优异的性质的MOFs。
2009年严秀平研究组首次把把 MOFs 用于SPME ,他们使用原位水热生长法,把MOF-199涂渍在不锈钢丝表面上,应用于空气中挥发性苯系物的萃取和富集,结果表明,MOF-199纤维涂层对苯系物选择性好、富集因子高、线性范围宽,其远优于商品化PDMS/DVB纤维涂层。对苯系物的检出限分别为8.3?23.3 ng/L ,相对标准偏差(RSD)2%~7.7%。。三次平行制备纤维纤维重复性(RSD)为3.5%?9.4%,对室内空气样品进行了分析苯系物的添加回收率在87%? 106%的范围。MOF-199纤维涂层对苯系物选择性好、富集因子高,远优于商品化PDMS/DVB纤维涂层.MOF-199对苯系物的高选择性和富集效率高是由于MOF-199比表面积大、孔结构独特和骨架上有1,3,5-苯三酸配体与苯系物芳环的π-π相互作用,以及孔内的路易斯酸位点与富电子的苯系物之间的π-π相互作用所致。但是,由于MOF-199的金属空配位点很容易被水分子占据,因此只适合用于气态样品或相对湿度较低样品的富集。(Anal Chem, 2009, 81(23):9771-9777)(分析化学,2013,41(9):1297-130l)。
2011年严秀平研究组把 ZIF-8作为选择性固相微萃取和ZIF-8作毛细管色谱柱的固定相结合,用以分析复杂基体(如石油和体液)中的正构烷烃。
(a) MOFs萃取头的制备:取20cm 长一段不锈钢丝,3 cm浸在王水(HCl:HNO3 = 3:1,v/v)中20min,不锈钢丝表面慢慢变粗,在刻蚀过程中有小气泡冒出,之后用超纯水轻轻洗净。刻蚀过的不锈钢丝安装到一个5μL微量注射上,在涂渍吸附剂前于气相色谱仪气化室 250℃下老化 1 h。把要涂渍的MOFs(MOF-199, ZIF-8, 和 ZIF-7)纳米级晶体颗粒用DMF(或甲醇)洗涤三次,分散在10mL DMF中,然后把老化好的不锈钢丝浸入MOFs溶液中,搅拌20 s。取出来在气相色谱仪进样口中在干燥N2中干燥10min,这一操作重复10次。使用前要把萃取头在气相色谱仪气化室中250℃下老化1 h,以除去残留的溶剂。得到的萃取头电镜图见图1。
石油基燃料样品用十四烷稀释500倍,取1μL稀释样于100mL 气密密封玻璃瓶中,超声5min,把萃取头插入样品瓶中,进行顶空萃取20 min,进行气相色谱分析。
为了考察不同MOFs不同孔隙对萃取物的选择性,他们对五个不同的孔隙,孔隙的孔径结构,研究了孔径的选择性和分子筛效应或尺寸排阻效应。选择MOF-199,ZIF-8,和ZIF-7的孔径尺寸为 0.9nm,0.34nm,和0.29nm用作固相微萃取吸着剂。
制备出来的固相微萃取头,MOF的涂层不仅光滑均匀(图1),而且坚固稳定。从石油基燃料中萃取烃类以考察萃取头的选择性,同时使用商品SPME萃取头PDMS/DVB进行比较,PDMS/DVB对苯系物、直链烷烃和支链烷烃没有什么选择性,萃取物进行色谱分析的色谱图很复杂。MOF-199涂渍的SPME萃取头,其选择性也很差,这是因为它的孔径为0.9nm x 0.9nm,它不仅可以吸附直链烷烃,也可以吸附支链烷烃和苯系物,结果轻烃比高沸点烃类有更高的萃取量,这是因为轻烃的挥发性高所致。但是ZIF-8 和 ZIF-7涂渍的SPME萃取头对上述样品有很好的选择性,ZIF-8对直链烷烃有很高的选择性,这是由于它的孔径为 0.34nm,与直链烷烃的临界尺寸相适应。ZIF-7涂渍的SPME萃取头的孔径只有0.29nm,小于所有样品分子的临界尺寸,所以没有萃取直链和支链烷烃(见图2中的g),但是对分子临界尺寸大于ZIF-7孔径的萃取头的苯系物仍然可以萃取,这是由于苯系物的π- π键和ZIF-7表面上的咪唑有相互π- π堆积作用力而被吸附(如图2中的h)。
协同效应(Synergy Effects),简单地说,就是“1+1>
2”的效应,在自然科学和社会科学中都利用这一协同效应,提高效果的最大化。严秀平研究组把MOFs –SPME 和MOFs毛细管色谱柱结合起来发挥它们的选择性协同作用。例如把ZIF-8萃取头的SPME与用ZIF-8涂渍的毛细管色谱柱相结合分析石油基样品中的直链烷烃,得到很好的效果,如图3所示。
图 3 ZIF-8-SPME与ZIF-8-毛细管柱分析石油基样品中的直链烷烃
2012年山东省分析测试中心的赵汝松等把 MIL-53(M)用作SPME吸附涂层,萃取水中的多环芳烃(Analyst,2012,137:5411-5419)。MIL-53(M)是稳定的固体,在水中其空隙不会有明显的变化,MIL-53(M) 可以在水中吸附有机物。他们把三种MIL-53(M)涂渍成SPME萃取头从水中提取16个多环芳烃用气相色谱-质谱/质谱进行测定。
MIL-53(Fe)的制备是把氯化高铁、对苯二甲酸和N,N’-二甲基甲酰胺以1 : 1 : 280摩尔比进行混合,转移到100 mL有聚四氟乙烯衬里的不锈钢反应釜(弹)中,在150℃下加热15 h。MIL-53(Al)是把硝酸铝、对苯二甲酸和去离子水以1 : 0.5 : 80摩尔比混合,转移到100 mL有聚四氟乙烯衬里的不锈钢反应釜(弹)中,在220℃下自动升压下保持3天。得到的产物再加热到280℃以除去对苯二甲酸残留,之后用去离子水洗涤4次。MIL-53(Cr)是在100 mL有聚四氟乙烯衬里的不锈钢反应釜(弹)中把硝酸铬(III)、对苯二甲酸、氢氟酸和水(摩尔比=1 : 1 : 1 : 280)混合物进行水热反应,得到的固体用200mL 乙醇在70℃洗涤4次,以除去对苯二甲酸残留。
取5 μL 微量注射器制作SPME萃取装置,首先把注射器的不锈钢丝前部的 2.5cm用氢氟酸刻蚀30min,把不锈钢丝抛光,在超声波浴中用丙酮、乙醇、和蒸馏水洗涤,在空气中晾干,经抛光的不锈钢丝插入环氧树脂胶中,慢慢取出,垂直插入到制备好的MOFs中,把涂渍了MOFs的不锈钢丝在70℃下烘烤30 min,这一操作重复3次,最后把它在气相色谱仪的气化室中280℃下老化4 h。这样制作的萃取头涂层厚度约为50μm。
萃取都是在一个20mL 玻璃瓶中进行,装入大约10 mL样品,盖上覆盖有聚四氟乙烯的瓶盖,用电磁搅拌器进行搅拌,把萃取头浸入水溶液中进行萃取。萃取后立刻把萃取头取出来,插入气相色谱仪进样口进行热脱附。连续进行两次萃取后,在新的萃取前,把萃取头在300℃下老化5min。
MOFs萃取头和商品SPME萃取头(100 μm PDMS 和 85 μm PA)对16种多环芳烃(PAHs)萃取效能的比较:PDMS适合于对非极性化合物的萃取,PA适合于极性化合物的萃取,这两种商品萃取头都可以从水中萃取这16种PAHs,PDMS对PAHS的萃取效率高于PA(因为PA对PAHs的亲和力小于PDMS)。三种MOFs萃取头的萃取效能为:MIL-53(Cr)
2014年严秀平研究组把MIL-88B以水热反应涂渍在不锈钢丝上,制备SPME萃取头,从水中萃取多氯联苯(PCBs)(J Chromatogr A,2014, 1334 :1–8)。MIL-88B((Fe3O(BDC)3X,X=Cl, OH, BDC = 1,4-对苯二甲酸),是由Fe3O为中心的三聚体,对苯二甲酸为配体构成的MOFs,具有大的表面积,纳米级双锥型笼结构,有好的热稳定性和对溶剂的稳定性,是一个很好的用于从水和土壤中萃取PCBs的吸附剂。
用作者们以前使用过的原位水热生长法制备MIL-88B SPME 萃取头涂层((Anal Chem, 2009, 81(23):9771-9777)。取一段20cm长的不锈钢丝,不锈钢丝的一端(长3厘米)用王水刻蚀,产生一段直径0.15mm的粗糙表面,用超纯水小心洗涤,在空气中干燥。为了要在蚀刻的不锈钢丝部分原位水热生长MIL-88B膜,在27 mL聚四氟乙烯内衬的反应釜(弹)中把243mg FeCl3?6H2O和664mg 对苯二甲酸与25mL甲醇和0.9mL氢氧化钠 (2M)混合。把蚀刻的不锈钢丝小心地浸在反应釜的溶液中,把反应釜密封,置于烘箱中在100℃ 加热16h。把MIL-88B不锈钢丝组装到一个5 μL微量注射器上,用DMF和甲醇依次洗涤,然后在气相色谱仪的气化室中于300℃ 下、在氮气中干燥1 h。
所有萃取过程都是在一个20mL 玻璃瓶中进行,装入大约10 mL样品,盖上覆盖有聚四氟乙烯的瓶盖,在水溶液顶空上进行萃取。萃取后立刻把萃取头取出来,插入气相色谱仪进样口进行热脱附。萃取头在使用前于300℃下老化30min。
2015年中山大学的欧阳钢奋把MIL-101(Cr)涂层的固相固相微萃取(SPME)用于萃取挥发性化合物(苯系物,苯、甲苯、乙苯、二甲苯和邻二甲苯)和水样中的半挥发性有机物(多环芳烃)。(Anal Chim Acta,2015, 853 :303–310)。MIL-101(Cr)涂层制备过程如图6所示:
MIL-101(Cr)涂层纤维具有良好的热稳定性,且具有良好的热稳定性,纤维可以重复使用150次以上。它已成功应用于河水中的苯系物和多环芳烃的分析,可对低浓度的分析物(1.7和10 ng /L)进行检测,获得的苯系物回收率为80–113%,多环芳烃为84.8–106%。与商品PDMS比较有很高的萃取效率,见图7
小结 :MOFs材料具有比表面高、热稳定性高、纳米级孔道结构均一、内孔具有功能性、外表面可修饰等,在分析化学领域有广泛的应用前景,尤其是很适合用作固相微萃取的吸附剂。本文列举了5个应用实例,说明MOFs萃取头具有很大的优势。